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Abstract: In this paper, the concept of monoid was examined on a generalised setting(multiset). Denoting the 

generalised setting of a monoid by a multi monoid, we introduced the concept of a multi-centre of a multi monoid 

and study the action of a centre of a multi monoid over the mset operations on the class of finite multi monoid. 

Further studies revealed that even though in general, the centre of a multi monoid need not be a multi monoid, 

however under the class of finite commutative multi monoids, the centre of a commutative multi monoid is a multi 

monoid and the centre of the commutative multi monoid is also a commutative multi monoid among other results. 
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1.   INTRODUCTION. 

George Ferdinand Ludwig Philip Cantor (1845-1918), a German mathematician is refered  to as the father of set theory. In 

his cardinal key axiom, he stated that an element must belong to a set only once. However, as research grows, his theories 

could not address so many fundamental issues, such as the hydrogen molecules in water, DNA strand among other reasons. 

Thus the emergence of  multiset (mset for short ) which is a collection of objects with repetitions allowed. For the various 

applications of msets the reader is referred to article [1], [4,],  [7], [ 9], and [11]. It is observed from the survey of available 

literature on msets and applications that the idea of mset was hinted by R. Dedikind in 1888. The mset theory which is 

termed as generalization of set theory was introduced by Cerf et al.[2] other literatures are [1,7,9,14]. The term mset, as 

noted by Knuth [4] was first suggested by N.G de Bruijn in a private communication to him. Further study was carried out 

by Yager [14], Blizard [1]. Other researchers ([5], [7], [8]) gave a new dimension to the mset theory.  

Several authors have studied the structures of the classical sets under the generalised settings, such as: mset topological 

space [10], the concepts of relations, function, composition, and equivalence in msets context. [3], Tella and Daniel have 

considered sets of mappings between msets and studied about group and symmetric groups under mset perspective.  ([12], 

[13]) Nazmul et al. improved on Tella and Daniel’s work and added two axioms  [6] In this paper we present the study of 

monoid in mset context while we lay more emphasis on the centre of the multi monoid. From the literatures, there may be 

some variations in the definition of monoid depending on the point of view of the different authors. However, in this paper 

we consider definitions in [15] and [16]. 

In addition to this section, we present some preliminary definitions in section two to make the paper self-contained and 

some fundamental results are presented in section three while the entire paper is summarized in section four. 

2.   PRELIMINARIES 

2.1 Definitions and notations 

Definition 2.1.1[15, 16]: Let 𝑆 be a set and µ: 𝑆 × 𝑆 → 𝑆 a binary operation that maps each ordered pair (𝑥, 𝑦) of 𝑆 to an 

element µ(𝑥, 𝑦) of 𝑆. The pair (𝑆, µ)(or just 𝑆, if there is no fear of confusion) is called a groupoid. The mapping µ is called 

the product of (𝑆, µ). We shall mostly write simply 𝑥𝑦 Instead of µ(𝑥, 𝑦). If we want to emphasize the place of the operation 

then we often write  𝑥. 𝑦. The element 𝑥𝑦(= µ(𝑥, 𝑦)) is the product of 𝑥 and 𝑦 in 𝑆.   
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Definition 2.1.2[15, 16]: A groupoid 𝑆 is a Semigroup if the operation µ is associative; for all 𝑥µ(𝑦µ𝑧) =

(𝑥µ𝑦)µ𝑧, ∀ 𝑥, 𝑦 and 𝑧 ∈ 𝑆. Thus a semigroup is a pair (𝑆, µ) where 𝑆 is a non empty set and µ is its binary operation on µ 

which satisfied two axioms: 

(i) The closure property 

(ii) The associativity property.   

Definition 2.1.3[15,16](Monoid): A semi-group (𝑆, µ) is a monoid if µ has an identity.   

Definition 2.1.4[1]. An mset 𝐴 over the set  𝑋 can be defined as a function  𝐶𝐴: 𝑋 → ℕ ∪ {0}, where ℕ = {0,1,2, … } where 

the value  𝐶𝐴(𝑥) denote the number of times or multiplicity or count function of 𝑥  𝑖𝑛 𝐴 . For example, Let 𝐴 =

[𝑥, 𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧], then 𝐶𝐴(𝑥) = 3, 𝐶𝐴(𝑦) = 3, 𝐶𝐴(𝑧) = 2. [𝐶𝐴(𝑥) = 0 ⇔ 𝑥 ∉ 𝐴]. If 𝐶𝑀(𝑥) = 0 for all 𝑥 ∈ 𝑋., then 𝑀 is 

called an empty set. We denote the empty mset by ∅. Then 𝐶∅(𝑥) = 0, ∀ 𝑥 ∈ 𝑋. ( 𝐶𝐴(𝑥) > 0 ⇔ 𝑥 ∈ 𝐴)..If 𝐶𝐴(𝑥) = 𝑛 then 

the membership of  𝑥 in 𝐴 can be denoted by 𝑥 ∈𝑛 𝐴, meaning 𝑥 belong to 𝐴 exactly 𝑛 times. 

Presentation of mset on paper work became a challenged as every researcher has his thought in that aspect. However the 

use of square brackets was adopted in ([1], [9],[11]) to represent an mset and ever since then it has become a standard. For 

example if the multiplicity of the elements 𝑥, 𝑦 and 𝑧 in an mset 𝑀 are 2,3 and 2 respectively, then the mset 𝑀 can be 

represented as 𝑀 = [𝑥, 𝑥, 𝑦, 𝑦, 𝑦, 𝑧, 𝑧, ], others  put it like [𝑥, 𝑦, 𝑧]2,3,2 or [𝑥2, 𝑦3, 𝑧2]  or [𝑥2, 𝑦3, 𝑧2] 𝑜𝑟 [2 𝑥⁄ , 3 𝑦⁄ , 2 𝑧⁄ ]  

depending on one’s  taste or expediencies. But for conveniences sake, curly bracket can be used instead of the square 

bracket. 

Definition 2.1.5[1]: The cardinality of a mset 𝑀 denoted |𝑀| or 𝑐𝑎𝑟𝑑(𝑀) is the sum of all the multiplicities of its elements 

given by the expression  |𝑀| = ∑ 𝑐𝐴(𝑥)𝑥∈𝑋   

Note: An mset 𝑀 is said to be finite if |𝑀| < ∞. 

We denote the class of all finite msets 𝐴 over the set 𝑋 by 𝑀(𝑋). 

Definition 2.1.6[2]: Let 𝑀 be an mset drawn from a set 𝑋. The support set of 𝑀 denoted by 𝑀∗ is a subset of  𝑋  given by  

𝑀∗ = {𝑥 𝜖 𝑋: 𝐶𝑀(𝑥) > 0}. 𝑀∗ is also called root set.  

Definition 2.1.7[1](Equal msets): Two msets 𝐴, 𝐵 ∈ 𝑀(𝑋)  are said to be equal, denoted  𝐴 = 𝐵 if and only if for any 

objects 𝑥 ∈ 𝑋, 𝐶𝐴(𝑥) = 𝐶𝐵(𝑥). This is to say that  𝐴 = 𝐵 if the multiplicity of every element in 𝐴 is equal to its multiplicity 

in 𝐵 and conversely.  

Definition 2.1.8[1] (Submultiset): Let  𝐴, 𝐵 ∈ 𝑀(𝑋). 𝐴 is a submultiset (submset for short) of 𝐵, denoted by 𝐴 ⊆ 𝐵 𝑜𝑟 𝐵 ⊇

𝐴, if 𝐶𝐴(𝑥) ≤ 𝐶𝐵(𝑥) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋. Also if  𝐴 ⊆ 𝐵 𝑎𝑛𝑑 𝐴 ≠ 𝐵, then 𝐴 is called proper submset of 𝐵 denoted by 𝐴 ⊂ 𝐵. In 

other words 𝐴 ⊂ 𝐵 if 𝐴 ⊆ 𝐵 and there exist at least an 𝑥 ∈ 𝑋  such that 𝐶𝐴(𝑥) < 𝐶𝐵(𝑥). We assert that an mset 𝐵 is called 

the parent mset in relation to the mset 𝐴. 

Note that: For any two msets 𝐴, 𝐵 ∈ 𝑀(𝑋), 𝐴 = 𝐵  if and only if 𝐴 ⊆ 𝐵 and. 𝐵 ⊆ 𝐴. 

Definition. 2.1.9[1]: (Regular or Constant mset): An mset𝐴  over the set 𝑋 is called regular or constant if all its elements 

are of the same multiplicities, i.e for any 𝑥, 𝑦 ∈ 𝐴, 

 𝑥 ≠ 𝑦 ⇒ 𝐶𝐴(𝑥) = 𝐶𝐴(𝑦). 

Definition 2.1.10: [9] (⋀ and ⋁ notations): The notations ⋀ and ⋁ denote the minimum and maximum operator respectively, 

for instance;  

𝐶𝐴(𝑥)⋀𝐶𝐴(𝑦) = 𝑚𝑖𝑛{𝐶𝐴(𝑥), 𝐶𝐴(𝑦)} 𝑎𝑛𝑑 𝐶𝐴(𝑥)⋁𝐶𝐴(𝑦) = 𝑚𝑎𝑥{𝐶𝐴(𝑥), 𝐶𝐴(𝑦)}. 

2.2 Multiset operations. 

Definition 2.2.1[9] (msets union): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). The union of  𝐴 𝑎𝑛𝑑 𝐵 denoted 𝐴 ∪ 𝐵 is the mset defined by   

𝐶𝐴∪𝐵(𝑥) = {𝐶𝐴(𝑥)⋁𝐶𝐵(𝑥)} ∀ 𝑥 ∈ 𝑋,  
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Definition 2.2.2[9] (msets intersection) Let𝐴, 𝐵 ∈ 𝑀(𝑋).The intersection of two mset 𝐴 and 𝐵 denoted by 𝐴 ∩ 𝐵, is the 

mset for which   

𝐶𝐴∩𝐵(𝑥) = {𝐶𝐴(𝑥)⋀𝐶𝐵(𝑥)} ∀ 𝑥 ∈ 𝑋. 

Definition 2.2.3[9] ( mset addition): Let 𝐴, 𝐵 ∈ 𝑀(𝑋). The direct sum or arithmetic addition of  𝐴 and 𝐵 denoted by 𝐴 + 𝐵 

or 𝐴⊎ 𝐵 is the mset defined by 

𝐶𝐴+𝐵(𝑥) = 𝐶𝐴(𝑥) + 𝐶𝐵(𝑥)∀ 𝑥 ∈ 𝑋. 

Note that ∣𝐴 ⊎ 𝐵∣= ∣𝐴 ∪ 𝐵∣ + ∣𝐴 ∩ 𝐵∣. 

Definition 2.2.4[9] (mset difference): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then the difference of 𝐵 from 𝐴, denoted by 𝐴 − 𝐵 is the mset such 

that 𝐶𝐴−𝐵(𝑥) = (𝐶𝐴(𝑥) − 𝐶𝐵(𝑥))⋁0, ∀ 𝑥 ∈ 𝑋. If 𝐵 ⊆ 𝐴, then 

𝐶𝐴−𝐵(𝑥) = 𝐶𝐴(𝑥) − 𝐶𝐵(𝑥)∀ 𝑥 ∈ 𝑋. 

It is sometimes called the arithmetic difference of 𝐵 from 𝐴. If 𝐵 ⊈ 𝐴 this definition still holds. It follows that the deletion 

of an element 𝑥 from an mset 𝐴 give rise to a new mset  𝐴′ = 𝐴 − 𝑥 such that 𝐶𝐴′(𝑥) = (𝐶𝐴(𝑥) − 1)⋁0  ∀ 𝑥 ∈ 𝑋. 

Definition 2.2.5[8] (mset symmetric difference): Let 𝑋  be a set and 𝐴, 𝐵 ∈ 𝑀(𝑋)Then the symmetric difference, denoted  

𝐴∆𝐵, is defined by   𝐶𝐴∆𝐵(𝑥) = |𝐶𝐴(𝑥) − 𝐶𝐵(𝑥)| ∀ 𝑥 ∈ 𝑋. 

Note that  𝐴∆𝐵 = (𝐴 − 𝐵) ∪ (𝐵 − 𝐴). 

Definition 2.2.6[8] (mset complement): Let 𝐺 = {𝐴1, 𝐴2, … , 𝐴𝑛} be a family of finite msets generated from the set 𝑋. Then, 

the maximum mset 𝑍 is defined by 𝐶𝑍(𝑥) = 𝑚𝑎𝑥𝐴∈𝐺𝐶𝐴(𝑥) for all 𝑥 ∈ 𝑋. The Complement of an mset  𝐴, denoted by 𝐴,̅ is 

defined: 

�̅� = 𝑍 − 𝐴 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝐶�̅�(𝑥) = 𝐶𝑍(𝑥) − 𝐶𝐴(𝑥), ∀ 𝑥 ∈ 𝑋.  

Note that 𝐴𝑖 ⊆ 𝑍 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖. 

Definition 2.2.7[8] (Multiplication by Scalar): Let  𝐴 ∈ 𝑀(𝑋), then the scalar multiplication denoted by 𝑏. 𝐴 is defined by 

𝐶𝑏.𝐴(𝑥) = 𝑏. 𝐶𝐴(𝑥), ∀ 𝑥 ∈ 𝑋, where 𝑏 ∈ {1,2,3, … }. 

Definition 2.2.8[8] (Arithmetic Multiplication): Let 𝐴, 𝐵 ∈ 𝑀(𝑋), then the Arithmetic Multiplication denoted by 𝐴. 𝐵 is 

defined by  𝐶𝐴.𝐵(𝑥) = 𝐶𝐴(𝑥). 𝐶𝐵(𝑥)  ∀ 𝑥 ∈ 𝑋. 

Definition 2.2.9[7] (Raising to an Arithmetic Power): Let  𝐴 ∈ 𝑀(𝑋), then  𝐴 raised to power 𝑛  denoted by  𝐴𝑛 is defined:  

𝐶𝐴𝑛(𝑥) = (𝐶𝐴(𝑥))
𝑛

 ∀ 𝑥 ∈ 𝑋, 𝑛 ∈ {0,1,2,3, … }. 

Definition 2.3.10[19]: Let 𝑋 be a groupoid, and  𝐴 ∈ 𝑀(𝑋). 𝐴 is said to be a multi-groupoid (mgroupoid for short) if the 

following condition is satisfied. 

𝐶𝐴(𝑥𝑦) ≥ 𝐶𝐴(𝑥) ∧ 𝐶𝐴(𝑦), ∀ 𝑥, 𝑦 ∈ 𝑋. 

We denote the class of all finite mgroupoids over 𝑋 by 𝑀𝐺𝑃(𝑋).  

Definition 2.3.11[20]: Let  𝐴 ∈ 𝑀𝐺𝑃(𝑋), then 𝐴 is said to be a semi –multigroup (semi-mgroup for short) if 𝑋 is a semi-

group. 

We denote the class of all finite semi-mgroups over 𝑋 by SMG(X). 

Clearly 𝑆𝑀𝐺(𝑋) ⊂ 𝑀𝐺𝑃(𝑋). 

Definition 2.3.12[20]: Let  𝐴 ∈ 𝑆𝑀𝐺(𝑋) and let 𝐵 be a submset of 𝐴. Then 𝐵 can be said to be a sub semi-mgroup of 𝐴, if 

𝐵 ∈ 𝑆𝑀𝐺(𝑋). 

Definition 2.3.13[21] Let  𝐴 ∈ 𝑆𝑀𝐺(𝑋). Then 𝐴 is said to be a multimonoid (mmonoid for short). If  

(i) 𝑋 is a monoid and 
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(ii) 𝐶𝐴(𝑒) ≥ 𝐶𝐴(𝑥)∀ 𝑥 ∈ 𝑋. 

Where 𝑒 is the identity element in  𝑋. 

Let the class of all finite mmonoids over the monoid 𝑋 be denoted as 𝑀𝑀(𝑋) such that 𝐴 ≠ ∅.. 

Definition 2.3.14: Let  𝐴 ∈ 𝑀𝑀(𝑋) and let  𝐵 be a submset of  𝐴. Then 𝐵 is said to be a sub mmonoid of 𝐴, if 𝐵 ∈ 𝑀𝑀(𝑋). 

Definition 2.3.15[21]; Composition of mmonoid: Let  𝐴, 𝐵 ∈ 𝑀𝑀(𝑋), then we call  

𝐴 ∘ 𝐵 the composition of 𝐴 and 𝐵 defined   

𝐶𝐴∘𝐵(𝑥) = ⋁{𝐶𝐴(𝑦) ∧ 𝐶𝐵(𝑧): 𝑦, 𝑧 ∈ 𝑋 ∋ 𝑦𝑧 = 𝑥}. 

Theorem 2.3.16[21]: 𝑀𝑀(𝑋) ⊂ 𝑆𝑀𝐺(𝑋). 

Theorem 2.3.17[21] Let 𝐴 ∈ 𝑀𝑀(𝑋). Then 𝐴∗ is a sub monoid of  𝑋. 

Theorem 2.3.18[21]: Let 𝐴 ∈ 𝑀𝑀(𝑋), then  𝐴∗ ∈ 𝑀𝑀(𝑋).  

Theorem 2.3.19[21]: Let 𝐴, 𝐵 ∈ 𝑀𝑀(𝑋), Then  

(i) 𝐴 ∩ 𝐵 ∈ 𝑀𝑀(𝑋). 

(ii) 𝑘. 𝐴 ∈ 𝑀𝑀(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) 𝐴. 𝐵 ∈ 𝑀𝑀(𝑋) 

(iv) 𝐴𝑛 ∈ 𝑀𝑀(𝑋), 𝑛 ∈ {0,1,2, … } 

(v) 𝐴𝜊𝐵 ∈ 𝑀𝑀(𝑋) 

Definition 2.3.20[21]: Let  𝐴 ∈ 𝑀𝑀(𝑋). Then 𝐴 is said to be cancellable if it is cancellable semi-mgroup. 

We denote the class of finite cancellable mmonoid as ℂ𝑀𝑀(𝑋).  

That is ℂ𝑀𝑀(𝑋) = {𝐴 ∈ 𝑀𝑀(𝑋) ∣ 𝐴 is cancellable}. 

Definition 2.3.21[21]: Let 𝐴 ∈ 𝑀𝑀(𝑋), then 𝐴 is said to be a commutative mmonoid if it is a commutative semi-mroup. 

Commutative mmonoid can also be called Abelian mmonoid. 

We denote the class of finite commutative mmonoid as 𝐶𝑀𝑀(𝑋). 

 That is 𝐶𝑀𝑀(𝑋) = {𝐴 ∈ 𝑀𝑀(𝑋)| 𝐴 is commutative} 

Theorem 2.3.22[21]: Let 𝐴 ∈ 𝑀𝑀(𝑋). If  𝐴 is a commutative mmonoid, then  𝐴∗ is a commutative sub mmonoid. 

Theorem 2.3.23[21]: Let 𝐴, 𝐵 ∈ 𝑀𝑀(𝑋)  such that 𝐴 and 𝐵 are commutative. Then the following expressions are 

commutative. 

(i) 𝐴 ∩ 𝐵 

(ii) 𝐴 ∪ 𝐵 

(iii) 𝐴 + 𝐵 

(iv) 𝐴 − 𝐵 

(v) 𝐴∆𝐵 

(vi) 𝐴 ∙ 𝐵 

(vii) 𝑘𝐴, 𝑘 ∈ {1,2,3, … } 

(viii) 𝐴𝑛 , 𝑛 ∈ {0,1,2, … } 

(ix) 𝐴𝑜𝐵 
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Theorem 2.3.24[21]: Let 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋). Then  

(i) 𝐴 ∩ 𝐵 ∈ 𝐶𝑀𝑀(𝑋). 

(ii)  𝑘. 𝐴 ∈ 𝐶𝑀𝑀(𝑋) 𝑘 ∈ {1,2 … . } 

(iii) 𝐴. 𝐵 ∈ 𝐶𝑀𝑀(𝑋) 

(iv)  𝐴𝑛 ∈ 𝐶𝑀𝑀, 𝑛 ∈ {0,1,2, … } 

(v) 𝐴𝜊𝐵 ∈ 𝐶𝑀𝑀(𝑋) 

Theorem 2.3.25[21]: ℂ𝑀𝑀(𝑋) = 𝐶𝑀𝑀(𝑋). 

3.   CENTRE OF MMONOIDS 

Definition 3.1.1: Let 𝑋 be a monoid and 𝐴 ∈ 𝑀𝑀(𝑋). We defined the center of 𝐴, denoted 𝑍(𝐴) as 

𝑍(𝐴) = { 𝑥 ∈𝑛 𝐴 ∣∣ 𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) } ∀ 𝑦 ∈ 𝑋. 

Example 3.1.2: Let 𝑋 = {1, −1, 𝑖, −𝑖} a monoid , where 1 is the identity element, under the multiplicative operation, and let 

 𝐴 = [1, −1, 𝑖, −𝑖]3,2,2,1. Here, 

𝐶𝐴(1. −1) = 𝐶𝐴(−1) = 2 = 𝐶𝐴(−1.1) = 𝐶𝐴(−1) = 2 

𝐶𝐴(1. 𝑖) = 𝐶𝐴(𝑖) = 2 = 𝐶𝐴(𝑖. 1) = 𝐶𝐴(𝑖) = 2 

𝐶𝐴(1. −𝑖) = 𝐶𝐴(−𝑖) = 1 = 𝐶𝐴(−𝑖. 1) = 𝐶𝐴(−𝑖) = 1 

𝐶𝐴(−1. 𝑖) = 𝐶𝐴(−𝑖) = 1 = 𝐶𝐴(𝑖. −1) = 𝐶𝐴(−𝑖) = 1 

𝐶𝐴(−1. −𝑖) = 𝐶𝐴(𝑖) = 2 = 𝐶𝐴(−𝑖. −1) = 𝐶𝐴(𝑖) = 2 

𝐶𝐴(𝑖. −𝑖) = 𝐶𝐴(1) = 3 = 𝐶𝐴(−𝑖. 𝑖) = 𝐶𝐴(1) = 3 

𝐶𝐴(1.1) = 𝐶𝐴(1) = 3 = 𝐶𝐴(1.1) = 𝐶𝐴(1) = 3 

𝐶𝐴(−1. −1) = 𝐶𝐴(1) = 3 = 𝐶𝐴(−1. −1) = 𝐶𝐴(1) = 3 

𝐶𝐴(𝑖. 𝑖) = 𝐶𝐴(−1) = 1 = 𝐶𝐴(𝑖. 𝑖) = 𝐶𝐴(−1) = 1 

𝐶𝐴(1. −1) = 𝐶𝐴(−1) = 1 = 𝐶𝐴(−1.1) = 𝐶𝐴(−1) = 1 

𝐶𝐴(−𝑖. −𝑖) = 𝐶𝐴(−1) = 1 = 𝐶𝐴(−𝑖. −𝑖) = 𝐶𝐴(−1) = 1 

In particular,  𝑍(𝐴) = [1, −1, 𝑖, −𝑖]3,2,2,1 

Thus 𝑍(𝐴) is the center of 𝐴. 

Proposition 3.1.3: Let 𝐴 ∈ 𝑀𝑀(𝑋) such that 𝐴 is commutative. Then 𝑍(𝐴) = 𝐴. 

Proof:  Since 𝐴 is commutative, we have  

𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥)  ∀ 𝑥, 𝑦 ∈ 𝑋                                                                                     

Thus for any 𝑥 ∈ 𝑋, we have   𝑥 ∈ 𝑍(𝐴)  

In particular,  𝐶𝑍(𝐴)(𝑥) =  𝐶𝐴(𝑥)   ∀ 𝑥 ∈ 𝑋(by definition) 

Thus  𝑍(𝐴) = 𝐴. 

Proposition 3.1.4: Let 𝐴 ∈ 𝑀𝑀(𝑋), such that 𝐴 is commutative. Then  𝑍(𝐴) ∈ 𝑀𝑀(𝑋)). 

Proof;  Clearly 𝑋 is a semi-group       (1) 

Then we show that 𝐶𝑍(𝐴)(𝑥𝑦) ≥  𝐶𝑍(𝐴)(𝑥) ∧  𝐶𝑍(𝐴)(𝑦) and  𝐶𝑍(𝐴)(𝑒) ≥  𝐶𝑍(𝐴)(𝑥) ∀ 𝑥 ∈ 𝑋. 
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Now 𝐴 ∈ 𝑀𝑀(𝑋) implies   𝐶𝐴(𝑥𝑦) ≥ 𝐶𝐴(𝑥) ∧ 𝐶𝐴(𝑦)      (2) 

But for any 𝑥, 𝑦 ∈ 𝑋, we have 𝑥𝑦 ∈ 𝑋 

  𝐶𝐴(𝑥𝑦) =  𝐶𝐴(𝑦𝑥)  ∀ 𝑥, 𝑦 ∈ 𝑋(since 𝐴 is commutative ), and 

  𝐶𝑍(𝐴)(𝑥𝑦) =  𝐶𝐴(𝑥𝑦) ≥ 𝐶𝐴(𝑥) ∧ 𝐶𝐴(𝑦)      (3)(from 2) 

But  𝑥, 𝑦, 𝑧 ∈ 𝑍(𝐴) 

𝐶𝑍(𝐴)(𝑥𝑦) =  𝐶𝐴(𝑥𝑦) ≥  𝐶𝑍(𝐴)(𝑥) ∧ 𝐶𝑍(𝐴)(𝑦)      (from 3) 

Therefore,  𝐶𝑍(𝐴)(𝑥𝑦) ≥  𝐶𝑍(𝐴)(𝑥) ∧ 𝐶𝑍(𝐴)(𝑦) ∀ 𝑥 ∈ 𝑋    (4) 

Since  𝐶𝐴(𝑥𝑒) = 𝐶𝐴(𝑒𝑥)  ∀ 𝑥 ∈ 𝑋. Thus 𝑒 ∈ 𝑍(𝐴). 

𝐶𝑍(𝐴)(𝑒) =  𝐶𝐴(𝑒) ≥ 𝐶𝐴(𝑥)  ∀ 𝑥 ∈ 𝑋, by hypothesis 

i.e  𝐶𝑍(𝐴)(𝑒) ≥ 𝐶𝑍(𝐴)(𝑥)   ∀ 𝑥 ∈ 𝑋. Since from     (5) 

From (4) and (5) above, if  𝐴 is commutative then  𝑍(𝐴) ∈ 𝑀𝑀(𝑋).  

Hence the result.   

Proposition 3.1.5: Let 𝐴 ∈ 𝑀𝑀(𝑋) such that 𝐴 is commutative. Then 𝑍(𝐴) is  commutative. 

Proof: From definition 3.1.1 and proposition 3.1.3. The result follows. Then  

𝐶𝑍(𝐴)(𝑥𝑦) =  𝐶𝐴(𝑥𝑦) = 𝐶𝐴(𝑦𝑥) = 𝐶𝑍(𝐴)(𝑦𝑥). 

Thus 𝐶𝑍(𝐴)(𝑥𝑦) = 𝐶𝑍(𝐴)(𝑦𝑥). 

In particular,  𝑍(𝐴) is commutative. 

Proposition 3.1.6: Let 𝐴 ∈ 𝐶𝑀𝑀(𝑋). If  𝐴 is  cancellable, then 𝑍(𝐴) is cancellable. 

Proof: Let  𝐴 ∈ 𝐶𝑀𝑀(𝑋), then  𝑍(𝐴) is commutative(Proposition 3.1.3) 

Thus 𝑍(𝐴) is cancellable(see [20]). 

Proposition 3.1.7: Let 𝐴 ∈ 𝑀𝑀(𝑋). Then 𝐴 is  commutative, if and only if  𝑍(𝐴) is cancellable. 

Proof: Assuming 𝐴 is commutative. then 𝑍(𝐴) is commutative(proposition 3.1.5). 

Thus 𝑍(𝐴) is cancellable(see [20]). 

Proposition 3.1.8: Let 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋), then 

(i) 𝑍(𝐴 ∩ 𝐵) ∈ 𝐶𝑀𝑀(𝑋). 

(ii) 𝑘. 𝑍(𝐴) ∈ 𝐶𝑀𝑀(𝑋), 𝑘 ∈ {1,2 … . } 

(iii) 𝑍(𝐴. 𝐵) ∈ 𝐶𝑀𝑀(𝑋) 

(iv) 𝑍(𝐴)𝑛 ∈ 𝐶𝑀𝑀(𝑋), 𝑛 ∈ {0,1,2, … } 

(v) 𝑍(𝐴𝜊𝐵) ∈ 𝐶𝑀𝑀(𝑋) 

Proof:  

(i)Since 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋), then 𝐴 ∩ 𝐵 ∈ 𝐶𝑀𝑀(𝑋)(proposition 2.3.24). In particular  

𝑍(𝐴 ∩ 𝐵) ∈ 𝐶𝑀𝑀(𝑋).By proposition 3.1.3 

(ii)Since 𝐴 ∈ 𝐶𝑀𝑀(𝑋), then 𝑘. 𝐴 ∈ 𝐶𝑀𝑀(𝑋)(proposition 2.3.24). In particular 𝑘. 𝑍(𝐴) ∈ 𝐶𝑀𝑀(𝑋).By proposition 3.1.3 

(iii)Since 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋). then 𝐴. 𝐵 ∈ 𝐶𝑀𝑀(𝑋)(proposition 2.3.24). In particular  
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𝑍(𝐴. 𝐵) ∈ 𝐶𝑀𝑀(𝑋).By proposition 3.1.3 

(iv)Since 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋), then 𝐴𝑛 ∈ 𝐶𝑀𝑀(𝑋)(proposition 2.3.24). In particular 𝑍(𝐴)𝑛 ∈ 𝐶𝑀𝑀(𝑋).By proposition 3.1.3 

(v)Since 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋), then 𝐴𝜊𝐵 ∈ 𝐶𝑀𝑀(𝑋)(proposition 2.3.24). In particular  

𝑍(𝐴𝜊𝐵) ∈ 𝐶𝑀𝑀(𝑋).By proposition 3.1.3 

Proposition 3.1.9: Let  𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋). Then  

(i)  𝑍(𝐴 ∩  𝐵) =  𝑍(𝐴) ∩ 𝑍(𝐵) 

(ii)  𝑍(𝐴 ∪  𝐵) = 𝑍(𝐴) ∪ 𝑍(𝐵) 

(iii)  𝑍(𝐴 +  𝐵) = 𝑍(𝐴) + 𝑍(𝐵) 

(iv)  𝑍(𝐴 −  𝐵) = 𝑍(𝐴) − 𝑍(𝐵) 

(v)  𝑍(𝐴∆𝐵) = 𝑍(𝐴)∆𝑍(𝐵) 

(vi)  𝑍(𝐴 ∙  𝐵) = 𝑍(𝐴) ∙ 𝑍(𝐵) 

(vii) 𝑍(𝑘. 𝐴) = 𝑘 𝑍(𝐴), 𝑘 ∈ {1,2,3, … } 

(viii) 𝑍(𝐴𝑛) =  (𝑍(𝐴))𝑛, 𝑛 ∈ {0,1,2, … } 

(ix)  𝑍(𝐴𝑜 𝐵) = 𝑍(𝐴)𝑜 Z(𝐵) 

Proof: 

(i) 𝑍(𝐴 ∩  𝐵) = 𝐴 ∩  𝐵 (since 𝐴 ∩  𝐵 is commutative) (see [21]) 

and 𝐴 ∩  𝐵 =  𝑍(𝐴) ∩ 𝑍(𝐵)(proposition 3.1.3) 

In particular,  𝑍(𝐴 ∩ 𝐵) =  𝑍(𝐴) ∩ 𝑍(𝐵).  

(ii) 𝑍(𝐴 ∪  𝐵) = 𝐴 ∪  𝐵 (since 𝐴 ∪  𝐵 is commutative) (see [21]) 

and 𝐴 ∪  𝐵 =  𝑍(𝐴) ∪ 𝑍(𝐵)(proposition 3.1.3) 

Thus 𝑍(𝐴 ∪ 𝐵) =  𝑍(𝐴) ∪ 𝑍(𝐵).  

(iii) 𝑍(𝐴 +  𝐵) = 𝐴 +  𝐵 (since 𝐴 +  𝐵 is commutative) (see [21]) 

and 𝐴 +  𝐵 =  𝑍(𝐴) + 𝑍(𝐵)(proposition 3.1.3) 

Thus 𝑍(𝐴 + 𝐵) =  𝑍(𝐴) + 𝑍(𝐵). 

(iv) 𝑍(𝐴 −  𝐵) = 𝐴 −  𝐵 (since 𝐴 −  𝐵 is commutative) (see [21]) 

and 𝐴 −  𝐵 =  𝑍(𝐴) − 𝑍(𝐵)(proposition 3.1.3) 

Thus 𝑍(𝐴 − 𝐵) =  𝑍(𝐴) − 𝑍(𝐵). 

(v) 𝑍(𝐴∆ 𝐵) = 𝐴∆ 𝐵 (since 𝐴∆ 𝐵 is commutative) (see [21]) 

and 𝐴∆ 𝐵 =  𝑍(𝐴)∆𝑍(𝐵)(proposition 3.1.3) 

Thus 𝑍(𝐴∆𝐵) =  𝑍(𝐴)∆𝑍(𝐵)  

(vi) 𝑍(𝐴. 𝐵) = 𝐴. 𝐵 (since 𝐴. 𝐵 is commutative) (see [21]) 

and 𝐴. 𝐵 =  𝑍(𝐴). 𝑍(𝐵)(proposition 3.1.3). 

Thus 𝑍(𝐴. 𝐵) =  𝑍(𝐴). 𝑍(𝐵)  

(vii) 𝑍(𝑘. 𝐴) = 𝑘. 𝐴(since 𝑘. 𝐴 is commutative) (see [21]) 
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and 𝑘. 𝐴 = 𝑘. 𝑍(𝐴)(proposition 3.1.3) 

Thus 𝑍(𝑘. 𝐴) =  k. 𝑍(𝐴). 

(viii) 𝑍(𝐴𝑛) = 𝐴𝑛 (since 𝐴𝑛 is commutative) (see [21]) 

and 𝐴𝑛 =  (𝑍(𝐴))𝑛 (proposition 3.1.3) 

Thus 𝑍(𝐴𝑛) =  (𝑍(𝐴))𝑛. 

(ix) 𝑍(𝐴𝑜 𝐵) = 𝐴𝑜 𝐵(since 𝐴𝑜 𝐵 is commutative) (see [21]) 

and 𝐴𝑜 𝐵 =  𝑍(𝐴)𝑜𝑍(𝐵)(proposition 3.1.3). 

Thus 𝑍(𝐴𝑜𝐵) =  𝑍(𝐴)𝑜𝑍(𝐵)  

Proposition 3.1.10: Let 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋). Then the following expressions are commutative: 

(i)  𝑍(𝐴 ∩  𝐵) 

(ii)  𝑍(𝐴 ∪  𝐵) 

(iii)  𝑍(𝐴 +  𝐵) 

(iv)  𝑍(𝐴 −  𝐵) 

(v)  𝑍(𝐴∆𝐵) 

(vi)  𝑍(𝐴 ∙  𝐵) 

(vii) 𝑘 𝑍(𝐴), 𝑘 ∈ {1,2,3, … } 

(viii) 𝑍(𝐴𝑛), 𝑛 ∈ {0,1,2, … } 

(ix)  𝑍(𝐴𝑜 𝐵) 

Proof: Since  𝐴 ∩  𝐵, 𝐴 ∪ 𝐵, 𝐴 + 𝐵.  𝐴 − 𝐵, 𝐴∆𝐵, 𝐴. 𝐵, 𝑘. 𝐴, 𝐴𝑛 and 𝐴𝑜 𝐵 are all commutative expressions (From 

Theorem 2.3.23)  It is clear that the expressions (i) to (ix) are all commutative expressions(proposition 3.1.3). 

Proposition 3.1.11: Let 𝐴, 𝐵 ∈ 𝐶𝑀𝑀(𝑋). Then the following expressions are cancellable: 

(i)  𝑍(𝐴 ∩  𝐵) 

(ii)  𝑍(𝐴 ∪  𝐵) 

(iii)  𝑍(𝐴 +  𝐵) 

(iv)  𝑍(𝐴 −  𝐵) 

(v)  𝑍(𝐴∆𝐵) 

(vi)  𝑍(𝐴 ∙  𝐵) 

(vii) 𝑘 𝑍(𝐴), 𝑘 ∈ {1,2,3, … } 

(viii) 𝑍(𝐴𝑛), 𝑛 ∈ {0,1,2, … } 

(ix)  𝑍(𝐴𝑜 𝐵) 

Proof: Since  𝐴 ∩  𝐵, 𝐴 ∪ 𝐵, 𝐴 + 𝐵.  𝐴 − 𝐵, 𝐴∆𝐵, 𝐴. 𝐵, 𝑘. 𝐴, 𝐴𝑛 and 𝐴𝑜 𝐵 are all cancellable expressions (See [21])  It is 

clear that the expressions (i) to (ix) are all cancellable expressions(Proposition 3.1.3). 

Proposition 3.1.12: Let  𝐴, 𝐵 ∈ ℂ𝑀𝑀(𝑋). Then  

 (i) 𝑍(𝐴 ∩ 𝐵) ∈ ℂ𝑀𝑀(𝑋). 

(ii) 𝑘. 𝑍(𝐴) ∈ ℂ𝑀𝑀(𝑋), 𝑘 ∈ {1,2 … . } 
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(iii) 𝑍(𝐴. 𝐵) ∈ ℂ𝑀𝑀(𝑋) 

(iv) 𝑍(𝐴)𝑛 ∈ ℂ𝑀𝑀(𝑋), 𝑛 ∈ {0,1,2, … } 

(v) 𝑍(𝐴𝜊𝐵) ∈ ℂ𝑀𝑀(𝑋) 

Proof: From theorem 2.3.25, proposition 3.1.7 and proposition 3.1.8 The result is clear. 

4.   CONCLUSION 

In this paper, the concept of monoid was examined on a generalised setting (multiset). Denoting the generalised setting of 

a monoid by a multi monoid, we introduced the concept of a centre of a multi monoid and study the action of a centre of a 

multi monoid over the mset operations on the class of finite multi monoid. We have shown that the centre of  intersection, 

arithmetic multiplication, composition, raising to an arithmetic power and multiplication by scalar are closed over the class 

of finite commutative multi monoids. Further studies revealed that even though in general, the centre of an multi monoid is 

not a multi monoid, however, under the class of finite commutative multi monoid,   the centre of a commutative multi 

monoid is the multi monoid, among other results. 
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